• About
  • Home
  • People
  • Papers
  • Photos
  • Videos
Menu

Human Media Lab

  • About
  • Home
  • People
  • Papers
  • Photos
  • Videos
×

MagicWand: Canadian researchers unveil world’s first cylindrical handheld device

Roel May 4, 2016

Queen’s University’s Human Media Lab to unveil world’s first handheld with a fully cylindrical display at CHI 2016 conference in San Jose, CA.

Researchers at Queen’s University’s Human Media Lab have developed the world’s first handheld device with a fully cylindrical user interface. The device, dubbed MagicWand, has a wide range of possible applications, including use as a game controller.

Similar to the Nintendo Wii remote, but with a 340 degree cylindrical display, users are able to use physical gestures to interact with virtual 3D objects displayed on the wand. The device uses visual perspective correction to create the illusion of motion parallax; by rotating the wand users can look around the 3D object.

Read More
Tags Press Releases

ReFlex: Revolutionary flexible smartphone allows users to feel the buzz by bending their apps

Roel February 16, 2016

Queen’s University’s Human Media Lab to unveil world’s first wireless flexible smartphone; simulates feeling of navigating pages via haptic bend input

KINGSTON - Researchers at Queen’s University’s Human Media Lab have developed the world’s first full-colour, high-resolution and wireless flexible smartphone to combine multitouch with bend input. The phone, which they have named ReFlex, allows users to experience physical tactile feedback when interacting with their apps through bend gestures.

“This represents a completely new way of physical interaction with flexible smartphones” says Roel Vertegaal (School of Computing), director of the Human Media Lab at Queen’s University.

“When this smartphone is bent down on the right, pages flip through the fingers from right to left, just like they would in a book. More extreme bends speed up the page flips. Users can feel the sensation of the page moving through their fingertips via a detailed vibration of the phone. This allows eyes-free navigation, making it easier for users to keep track of where they are in a document.”

Read More
Tags Press Releases

BitDrones: Interactive Flying Microbots Show Future of Virtual Reality is Physical

Roel November 5, 2015

Queen’s University’s Roel Vertegaal says self-levitating displays are a breakthrough in programmable matter, allowing physical interactions with mid-air virtual objects

KINGSTON, ON – An interactive swarm of flying 3D pixels (voxels) developed at Queen’s University’s Human Media Lab is set to revolutionize the way people interact with virtual reality. The system, called BitDrones, allows users to explore virtual 3D information by interacting with physical self-levitating building blocks.

Queen’s professor Roel Vertegaal and his students are unveiling the BitDrones system on Monday, Nov. 9 at the ACM Symposium on User Interface Software and Technology in Charlotte, North Carolina. BitDrones is the first step towards creating interactive self-levitating programmable matter – materials capable of changing their 3D shape in a programmable fashion – using swarms of nano quadcopters. The work highlights many possible applications for the new technology, including real-reality 3D modeling, gaming, molecular modeling, medical imaging, robotics and online information visualization.

Read More
Tags Press Releases
← NewerOlder →


 


@humanmedialab

Archive

Alumni